Numerical Prediction of Cavitating MHD Flow of Electrically Conducting Magnetic Fluid in a Converging-Diverging Nozzle

Author:

Ishimoto Jun1

Affiliation:

1. Department of Intelligent Machines and System Engineering, Hirosaki University, 3, Bunkyo-cho, Hirosaki 036-8561, Japan

Abstract

The fundamental characteristics of the two-dimensional cavitating MHD flow of an electrically conducting magnetic fluid in a vertical converging-diverging nozzle under a strong nonuniform magnetic field are numerically predicted to realize the further development and high performance of a two-phase liquid-metal MHD power generation system using electrically conducting magnetic fluids. First, the governing equations of the cavitating flow of a mercury-based magnetic fluid based on the unsteady thermal nonequilibrium multifluid model are presented, and several flow characteristics are numerically calculated taking into account the effect of the strong nonuniform magnetic field. Based on the numerical results, the two-dimensional structure of the cavitating flow and cavitation inception phenomena of the mercury-based magnetic fluid through a converging-diverging nozzle are shown in detail. The numerical results demonstrate that effective two-phase magnetic driving force, fluid acceleration, and high power density are obtained by the practical use of the magnetization of the working fluid. Also clarified is the precise control of the cavitating flow of magnetic fluid that is possible by effective use of the magnetic body force that acts on cavitation bubbles.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3