Affiliation:
1. Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455
Abstract
The synthesis and hydrolysis of zinc nanoparticles are carried out in a tubular reactor. A key component of the reactor is a coaxial jet quench device. Three coaxial and multi-inlet confined jets mix Zn(g), steam, and argon to produce and hydrolyze zinc nanoparticles. The performance of the quench device is assessed with computational fluid dynamics modeling and measurements of hydrogen conversion and particle size and composition. Numerical data elucidate the impact of varying jet flow rates on temperature and velocity distributions within the reactor. Experiments produce hydrogen conversions of 61–79%. Particle deposition on sections of the reactor surface above 650 K favors hydrolysis. Residence time for in-flight particles is less than 1 s and these particles are partially hydrolyzed.
Subject
Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献