A Model of Multiphase Flow Dynamics Considering the Hydrated Bubble Behaviors and Its Application to Deepwater Kick Simulation

Author:

Sun Xiaohui1,Sun Baojiang2,Gao Yonghai1,Wang Zhiyuan1

Affiliation:

1. School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China

2. School of Petroleum Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao, Qingdao 266580, China e-mail:

Abstract

The interaction between hydrated bubble growth and multiphase flow dynamics is important in deepwater wellbore/pipeline flow. In this study, we derived a hydrate shell growth model considering the intrinsic kinetics, mass and heat transfer, and hydrodynamics mechanisms in which a partly coverage assumption is introduced for elucidating the synergy of bubble hydrodynamics and hydrate morphology. Moreover, a hydro-thermo-hydrate model is developed considering the intercoupling effects including interphase mass and heat transfer, and the slippage of hydrate-coated bubble. Through comparison with experimental data, the performance of proposed model is validated and evaluated. The model is applied to analyze the wellbore dynamics process of kick evolution during deepwater drilling. The simulation results show that the hydrate formation region is mainly near the seafloor affected by the fluid temperature and pressure distributions along the wellbore. The volume change and the mass transfer rate of a hydrated bubble vary complicatedly, because of hydrate formation, hydrate decomposition, and bubble dissolution (both gas and hydrate). Moreover, hydrate phase transition can significantly alter the void fraction and migration velocity of free gas in two aspects: (1) when gas enters the hydrate stability field (HSF), a solid hydrate shell will form on the gas bubble surface, and thereby, the velocity and void fraction of free gas can be considerably decreased; (2) the free gas will separate from solid hydrate and expand rapidly near the sea surface (outside the HSF), which can lead to an abrupt hydrostatic pressure loss and explosive development of the gas kick.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3