Heat Transfer, Adiabatic Effectiveness, and Injectant Distributions Downstream of a Single Row and Two Staggered Rows of Compound Angle Film-Cooling Holes

Author:

Ligrani P. M.1,Ciriello S.2,Bishop D. T.2

Affiliation:

1. Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112

2. Department of Mechanical Engineering, Naval Postgraduate School, Monterey, CA 93943

Abstract

Experimental results are presented that describe the development and structure of flow downstream of one row and downstream of two staggered rows of film-cooling holes with compound angle orientations. With the compound angle configuration, holes are inclined at 35 deg with respect to the test surface when projected into the streamwise/normal plane, and 30 deg with respect to the test surface when projected into the spanwise/normal plane. Within each row, holes are spaced 7.8 hole diameters apart, which gives 3.9d spacing between adjacent holes for the staggered row arrangement. Results presented include disributions of iso-energetic Stanton numbers, and adiabatic film cooling effectiveness deduced from Stanton numbers using superpositiion. Also presented are plots showing the streamwise development of injectant distributions and streamwise development of mean velocity distributions. Spanwise-averaged values of the adiabatic film cooling effectivenss, η, measured downstream of two staggered rows of holes are highest with a blowing ratio m of 0.5, and decrease with blowing ratio because of injection lift-off effects for x/d < 20. However, as the boundary layers convect farther downstream, η values for m = 0.5 are lower than values for m = 1.0, 1.5, and 1.74 since smaller amounts of injectant are spread along the test surface. These differences also result because injectant from the upstream row of holes eventually merges and coalesces with the injectant from the downstream row of holes (of the two staggered rows) at the higher m. With one row of holes, local effectivenss variations are spanwise periodic, where higher values correspond to locations where injectant is plentiful near the test surface. Local Stf/Sto data also show spanwise periodicity, with local Stf/So maxima corresponding to regions of higher mixing between streamwise velocity deficits. Spanwise-averaged iso-energetic Stanton number ratios downstream of both the one-row and two-row arrangements generally range between 1.0 and 1.25, and show little variation with x/d for each value of m tested. However, for each x/d Stf/StoValues increase with m. Additional discussion of these results is presented along with comparisons to ones obtained downstream of film cooling holes with simple angles in which holes are inclined at 35 deg with respect to the test surface in the streamwise/normal plane.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3