Effect of Ship Speed on Level Ice Edge Breaking

Author:

Sazidy Mahmud1,Daley Claude1,Colbourne Bruce1,Wang Jungyong2

Affiliation:

1. Memorial University of Newfoundland, St. John’s, NL, Canada

2. National Research Council of Canada, St. John’s, NL, Canada

Abstract

This paper presents a numerical model of ship ice-wedge interaction to study the effect of ship speed on level ice edge breaking. The interaction process is modeled using LS-DYNA. The developed model considers ice crushing, ice flexural failure and the water foundation effect. For the ice, two different plasticity-based material models are used to represent ice crushing and ice flexural behaviors. The water foundation effect is modeled using a simple linear elastic material. The analysis is performed for a ship speed range of 0.1 to 5 ms−1 and ice thickness of 0.5 to 1.5 m. The analysis indicates that both ship speed and ice thickness significantly affect the ice breaking process. The model results are in good agreement with a number of analytical and empirical models. The model can be useful in establishing a rational basis for safe speed criteria, improving ship structural standards and tools for ice management capability assessment.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical Simulation of Ship–Ice Layer Collision Using the Cohesive Element Method;2023 International Conference on Telecommunications, Electronics and Informatics (ICTEI);2023-09-11

2. Conventional and Deep-Water Shipping Passages Along the Northern Sea Route;Handbook of Research on International Collaboration, Economic Development, and Sustainability in the Arctic;2019

3. Study of ship speed regimes in the Arctic sea ice conditions;IOP Conference Series: Earth and Environmental Science;2018-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3