An Investigation of the Tribological Behavior of Hf-Based Bulk Metallic Glass and Crystalline Alloys

Author:

Abad M.D.12,Browne D.J.2

Affiliation:

1. Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarriá, Universitat Ramon Llull, Barcelona 08017, Spain;

2. School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland

Abstract

Abstract The use of bulk metallic glasses (BMGs) as advanced materials for many applications is attractive, due to their improved mechanical performance over their crystalline counterparts: typically providing higher strength and hardness. Hafnium-based alloys of two similar compositions were prepared by arc melting and suction casting to produce 6-mm-diameter cast rods of an amorphous alloy and a crystalline one. The selected compositions were Hf48Cu29Ni10Al13 (amorphous) and Hf58Cu20Ni16Ti6 (crystalline), as confirmed by X-ray diffraction. The hardness of the amorphous alloy was higher than that of the crystalline one. A detailed study of their tribological behavior was carried out, using a pin-on-disc wear tester, with tungsten carbide counterface balls. There were no statistically significant differences in friction coefficient or wear-rates between the two materials tested. Adherence of material from the tested alloy to the ball, and vice versa, were detected. No changes to the crystallinity of the bulk samples were induced by the wear process, as determined by X-ray diffraction. However, amorphous debris were obtained from both samples, indicating the possibility of local vitrification of particles detached from the crystalline alloy and confirming thermal stability of the amorphous alloy.

Funder

European Space Agency

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3