Study of Pressurized Fluidized Bed Combustion Combined Cycles With Gas Turbine Topping Cycle

Author:

Bohn D.1,Dibelius G. H.1,Pitt R. U.1,Faatz R.1,Cerri G.2,Salvini C.2

Affiliation:

1. Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany

2. Universita degli studi di Roma “La Sapienzia”, Rome, Italy

Abstract

Coal based combined cycles for efficient generation of electricity or cogeneration of thermal and mechanical (electrical) power can be realized making use of Pressurized Fluidized Bed Combustion (PFBC). A draw-back with respect to the efficiency, however, is imposed from the combustion system limiting the temperature to some 850°C. This threshold may be overcome by integrating a high pressure, high temperature gas turbine topping cycle into the process. In a first step, the high pressure, high temperature gas turbine is fired by natural gas, and the exhaust gas of the turbine is fed to the PFB combustor as an oxygen carrier. In a future advanced system, the fuel gas may be provided by an integrated coal gasification process. A basic reference case has been established based on commercially available gas turbine equipment, hot gas filtration systems as actually tested in various pilot installations, and on a conservative steam cycle component technology. With an ISO gas turbine inlet temperature of 1165°C and an overall compression ratio of 16 up to 30, the entire process yields a net efficiency of some 46% (LHV) and an overall power output of some 750 MW with the gaseous fuel making up for some 50% of the overall energy input. Both the efficiency and the power output have been found rather insensitive with respect to a variation of the overall compression ratio. However, for a non-intercooled compression, an increase of the maximum process pressure would allow for the energy input to be shifted towards coal (and to reduce the natural gas input), and in particular for an elevated PFB combustor pressure considered mandatory for compactness as well as for combustion efficiency including emissions. The numerous calculations for the design, the optimization and the prediction of part-load operation of complex systems are efficiently performed with a semi-implicit method, the results of which have been checked carefully against those of a more conventional sequential approach and found in good agreement.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Neural Network Simulator of a Gas Turbine With a Waste Heat Recovery Section;Journal of Engineering for Gas Turbines and Power;2001-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3