Affiliation:
1. Aero Engine Academy of China, No. 21 ShunXing Road, Beijing 101304, China e-mail:
Abstract
Large eddy simulation (LES) of nonreacting turbulent flow in a multiswirler model combustor is carried out at elevated pressure and high temperature. Flow interaction between the main stage and the pilot stage is discussed based on the time-averaged and instantaneous flowfield. Flow dynamics in the multiswirling flow are analyzed using a phase-averaged method. Proper orthogonal decomposition (POD) is used to extract dominant flow features in the multiswirling flow. Numerical results show that the main stage and the pilot stage flows interact with each other generating a complex flowfield. Flow interaction can be divided into three regions: converging region, merging region, and combined region. A precessing vortex core (PVC) is successfully captured in the pilot stage. PVC rotates with a first dominant frequency of 2756 Hz inducing asymmetric azimuthal flow instabilities in the pilot stage. POD analyses for the velocity fields also show dominant high-frequency modes (mode 1 and mode 2) in the pilot stage. However, the dominant energetic flow is damped rapidly downstream of the pilot stage such that it has a little effect on the main stage flow.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献