Finite Volume-Based Asymptotic Homogenization of Periodic Materials Under In-Plane Loading

Author:

He Zhelong1,Pindera Marek-Jerzy1

Affiliation:

1. Department of Engineering Systems and Environment, University of Virginia, Charlottesville, VA 22904

Abstract

AbstractThe previously developed finite volume-based asymptotic homogenization theory (FVBAHT) for anti-plane shear loading (He, Z., and Pindera, M.-J., “Finite-Volume Based Asymptotic Homogenization Theory for Periodic Materials Under Anti-Plane Shear,” Eur. J. Mech. A Solids (in revision)) is further extended to in-plane loading of unidirectional fiber reinforced periodic structures. Like the anti-plane FVBAHT, the present extension builds upon the previously developed finite volume direct averaging micromechanics theory applicable under uniform strain fields and further accounts for strain gradients and non-vanishing microstructural scale relative to structural dimensions, albeit with multidimensional in-plane loadings incorporated. The unit cell problems at different orders of the asymptotic field expansion are solved by satisfying local equilibrium equations and displacement and traction continuity in a surface-averaged sense which is unique among the existing asymptotic homogenization schemes, leading to microfluctuation functions that yield homogenized stiffness tensors at each order for use in macroscale problems. The newly extended multiscale theory is employed in the analysis of a structural boundary-value problem under in-plane loading, illustrating pronounced boundary effects. A combination approach proposed in the literature is subsequently employed to mitigate the boundary layer effects by explicitly accounting for the microstructural details in the boundary region. This combination approach produces accurate recovery of the local fields in both regions. The extension to in-plane problem marks FVBAHT as an alternative, self-contained asymptotic homogenization tool, with documented advantages relative to current numerical techniques, for the analysis of periodic materials in the presence of strain gradients produced by three-dimensional loading regardless of microstructural scale.

Funder

University of Virginia

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3