Polymer Lubrication: Pressure–Viscosity–Temperature Dependence of Film Thickness for Highly Loaded Compliant Contacts in Elastohydrodynamic Lubrication Regime

Author:

Krupka Jiri1,Dockal Krystof1,Krupka Ivan1,Hartl Martin1

Affiliation:

1. Brno University of Technology Department of Tribology, Faculty of Mechanical Engineering, , Technicka 2896/2, 616 69 Brno , Czech Republic

Abstract

Abstract The relevance of the compliant contacts operated in elastohydrodynamic lubrication regime has increased during the last decades. Polymers and elastomers have been preferred because of their low-cost production or their tribological performance in many mechanical and bioengineering applications, where the metals originally dominated. Especially, in high-performance applications, such as polymer gears, the current subject of interest covers the transition between Piezoviscous-elastic and Isoviscous-elastic regimes of elastohydrodynamic lubrication. Here, it is necessary to precisely determine operating conditions and lubricant properties such as rheology whose contribution to film thickness formation may be influenced by attributes of individual lubrication regimes. The high-pressure viscosimeter and the optical tribometer were used, the former to establish the pressure–viscosity–temperature relationship of two reference lubricants, natural Squalane and synthetic tri(2-ethylhexyl) trimellitate, and the latter to determine the central and minimum film thickness in the circular contact between the PMMA disc and the steel ball using the optical chromatic interferometry method. Experimental results of film thickness demonstrated a significant deviation from the soft elastohydrodynamic lubrication (EHL) models, independently of the lubricant used, load, entrainment speed, and temperature because the pressure–viscosity–temperature response of lubricant was not included. Due to this, film thickness data were regressed, and new power coefficients of dimensionless parameter G¯ were derived. Outcomes confirmed the operation of the compliant circular contact in the transition region between the Piezoviscous-elastic and Isoviscous-elastic regimes with the minimum film thickness identified on the side lobes of the horseshoe shape.

Funder

Grantová Agentura Ceské Republiky

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference39 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3