A Transient Thermohydrodynamic Analysis Including Mass Conserving Cavitation for Dynamically Loaded Journal Bearings

Author:

Paranjpe Rohit S.1,Han Taeyoung2

Affiliation:

1. Engine Research Department, GM R&D Center, Engine Research Department, Bldg. 1-6, Warren, MI 48090-9055

2. Engineering Mechanics Department, GM R&D Center, Engine Research Department, Bldg. 1-6, Warren, MI 48090-9055

Abstract

A comprehensive transient thermohydrodynamic analysis for dynamically loaded journal bearings such as engine crankshaft bearings has been developed. A key element in this analysis is consideration of different time scales for the oil film, journal and bushing. Another important element of this analysis is consideration of moving grids in the oil film. Mass conserving cavitation is included via the Elrod cavitation algorithm. The 3-D energy equation is solved without any simplification in the oil film or the bushing. The journal is treated as a lumped thermal element. We found that the time scales for thermal transients in the oil film are of the same order as the period of the dynamic loading (one engine cycle for a crankshaft bearing); consequently, thermal transients in the oil film were considered. However, the time scales for thermal transients in the journal and bushing are several orders of magnitude greater than those for the oil film. Consequently, these elements were treated as if they were in quasi-steady state over one loading cycle. Results from this analysis are presented for an engine crankshaft main bearing under sinusoidal loading. Oil film temperatures are found to vary considerably over time and space.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3