Data-Driven Method for Response Control of Nonlinear Random Dynamical Systems

Author:

Tian Yanping1,Jin Xiaoling2,Wu Lingling3,Yang Ying2,Wang Yong2,Huang Zhilong2

Affiliation:

1. College of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China e-mail: t

2. Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China

3. School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287

Abstract

Abstract The response control of nonlinear random dynamical systems is an important but also difficult subject in scientific and industrial fields. This work merges the decomposition technique of feedback control and the data-driven identification method of stationary response probability density, converts the constrained functional extreme value problem associated with optimal control to an unconstrained optimization problem of multivariable function, and determines the optimal coefficients of preselected control terms by an optimization algorithm. This data-driven method avoids the difficulty of solving the stochastic dynamic programming equation or forward–backward stochastic differential equations encountered in classical control theories, the miss of the conservative mechanism in the nonlinear stochastic optimal control strategy, and the difficulty of judging the integrability and resonance of the controlled Hamiltonian systems encountered in the direct-control method. The application and efficacy of the data-driven method are illustrated by the random response control problems of the Duffing oscillator, van der Pol system, and a two degrees-of-freedom nonlinear system.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3