Novel Form-Finding of Tensegrity Structures Using Ant Colony Systems

Author:

Chen Yao1,Feng Jian2,Wu Yongfen3

Affiliation:

1. School of Civil Engineering, Southeast University, Nanjing 210096, China

2. Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 210096, China; National Prestress Engineering Research Centre, Southeast University, Nanjing 210096, China

3. Institute of Command Automation, PLA University of Science and Technology, Nanjing 210007, China

Abstract

Tensegrity structures have remarkable configurations and are drawing the attention of architects and engineers. They possess inextensional mechanisms and self-stress states at a static equilibrium configuration under no external loads. For geometry with its nodes fixed, different connectivity patterns of the compression bars and tension cables might bring some novel tensegrity structures. Thus, form-finding is the key to designing novel tensegrity structures. Here, we develop a discrete optimization model for the form-finding and convert it into a modified traveling salesman problem (TSP). The ant colony system (ACS) is used to search for feasible solutions, where all the predetermined nodes are taken as different cities in the network. An objective function that considers the stability and the relative stiffness is developed to obtain the optimized configurations of tensegrity structures. Examples based on some regular geometries (including a hexagon and two polyhedra) and two nonregular geometries are carried out using the proposed technique. Many different configurations of the pin-jointed assemblies are transformed into interesting tensegrity structures. To verify the proposed method, some physical models are constructed and compared to the tensegrity structures obtained from the form-finding process. We conclude that this novel algorithm can be applicable to the form-finding of both regular and nonregular tensegrity structures.

Publisher

ASME International

Subject

Mechanical Engineering

Reference43 articles.

1. Fuller, R. B. , 1962, “Tensile-Integrity Structures,” U.S. Patent No. 3,063,521.

2. An Introduction to Tensegrity

3. Tensegrity

4. A Direct Approach to Design of Geometry and Forces of Tensegrity Systems;Zhang;Int. J. Solids Struct.

5. Using Symmetry for Tensegrity Form-Finding;Pandia Raj;J. Int. Assoc. Shell Spatial Struct.: IASS

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3