Summary of Weld Residual Stress Analyses for Dissimilar Metal Weld Nozzles

Author:

Brust F. W.1,Zhang Tao1,Shim Do-Jun1,Kalyanam Sureshkumar1,Wilkowski Gery1,Smith Mike2,Goodfellow Andrew2

Affiliation:

1. Engineering Mechanics Corporation of Columbus, Columbus, OH

2. British Energy Generation Limited (UK), Barnwood, Gloucester, UK

Abstract

Flaw indications have been found in some dissimilar metal nozzle to stainless steel piping welds in pressurized water reactors (PWR) throughout the world. The nozzle welds usually involve welding ferritic (often A508) nozzles to 304/316 stainless steel pipe using Alloy 182/82 weld metal. Due to an unexpected aging issue with the weld metal, the weld becomes susceptible to a form of corrosion cracking referred to as primary water stress corrosion cracking (PWSCC). It can occur if the temperature is high enough (usually >300C) and the water chemistry in the PWR is typical of operating plants. This paper represents one of a series of papers which examine the propensity for cracking in a particular operating PWR in the UK. This paper represents an examination of the weld residual stress distributions which occur in four different size nozzles in the plant. Companion papers in this conference examine crack growth and PWSCC mitigation efforts related to this plant. British Energy (BE) has developed a work program to assess the possible impact of PWSCC on dissimilar metal welds in the primary circuit of the Sizewell ‘B’ pressurized water reactor. This effort has included the design and manufacture of representative PWR safety/relief valve nozzle welds both with and without a full structural weld overlay, multiple residual stress measurements on both mock-ups using the deep hole and incremental deep hole methods, and a number of finite element weld residual stress simulations of both the mock-ups and equivalent plant welds. This work is summarized in companion papers [1–3]. Here, the detailed weld residual stress predictions for these nozzles are summarized. The weld residual stresses in a PWR spray nozzle, safety/relief nozzle, surge nozzle, and finally a steam generator hot-leg nozzle are predicted here using an axis-symmetric computational weld solution process. The residual stresses are documented and these feed into a natural crack growth analysis provided in a companion PVP 2010-25162 paper [1]. The solutions are made using several different constitutive models: kinematic hardening, isotropic hardening, and a mixed hardening model. Discussion will be provided as to the appropriateness of the constitutive model for multi-pass DM weld modeling. In addition, the effect of including or neglecting the post-weld heat treatment process, which typically occurs after the buttering process in a DM weld, is presented. During operation the DM welds in a PWR experience temperatures in excess of 300°C. The coefficient of thermal expansion (CTE) mismatch between the three materials, particularly the higher CTE in the stainless steel, affects the stresses at operating temperature. The K-weld geometry used in the steam generator nozzles in this plant combines with CTE mis-match effects to result in service stresses somewhat different from V-weld groove cases.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3