Application of the Laplace-Wavelet Combined With ANN for Rolling Bearing Fault Diagnosis

Author:

Al-Raheem Khalid F.1,Roy Asok2,Ramachandran K. P.1,Harrison D. K.2,Grainger Steven2

Affiliation:

1. Department of Mechanical and Industrial Engineering, Caledonian College of Engineering, Sultanate of Oman, P.O. Box No. 2322, CPO Seeb, South Al-Hail 111, Oman

2. School of Engineering Science and Design, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, Scotland

Abstract

A new technique for an automated detection and diagnosis of rolling bearing faults is presented. The time-domain vibration signals of rolling bearings with different fault conditions are preprocessed using Laplace-wavelet transform for features’ extraction. The extracted features for wavelet transform coefficients in time and frequency domains are applied as input vectors to artificial neural networks (ANNs) for rolling bearing fault classification. The Laplace-Wavelet shape and the ANN classifier parameters are optimized using a genetic algorithm. To reduce the computation cost, decrease the size, and enhance the reliability of the ANN, only the predominant wavelet transform scales are selected for features’ extraction. The results for both real and simulated bearing vibration data show the effectiveness of the proposed technique for bearing condition identification with very high success rates using minimum input features.

Publisher

ASME International

Subject

General Engineering

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3