Numerical Simulation of Laminar Liquid Film Condensation in a Horizontal Circular Minichannel

Author:

Da Riva E.1,Del Col D.1

Affiliation:

1. Dipartimento di Fisica Tecnica, University of Padova, Via Venezia 1, Padova I-35131, Italy

Abstract

A three-dimensional volume of fluid (VOF) simulation of condensation of R134a inside a 1 mm i.d. minichannel is presented. The minichannel is horizontally oriented and the effect of gravity is taken into account. Simulations have been run both with and without taking into account surface tension. A uniform interface temperature and a uniform wall temperature have been fixed as boundary conditions. The mass flux is G = 100 kg m−2 s−1 and it has been assumed that the flow is laminar inside the liquid phase while turbulence inside the vapor phase has been handled by a modified low Reynolds form of the k–ω model. The fluid is condensed till reaching 0.45 vapor quality. The flow is expected to be annular without the presence of waves, therefore the problem was treated as steady state. Computational results displaying the evolution of vapor–liquid interface and heat transfer coefficient are reported and validated against experimental data. The condensation process is found to be gravity dominated, while the global effect of surface tension is found to be negligible. At inlet, the liquid film is thin and evenly distributed all around the tube circumference. Moving downstream the channel, the film thickness remains almost constant in the upper half of the minichannel, while the film at the bottom of the pipe becomes thicker because the liquid condensed at the top is drained by gravity to the bottom.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3