Numerical and Experimental Studies of Ballistic Compression Process in a Soft Recovery System

Author:

Mathur Girijesh1,Tiwari Nachiketa1,Chaturvedi Neha2

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, UP 208016, India

2. Department of Mechanical Engineering, Indian Institute of Technology, Dhanbad, Jharkhand 826004, India

Abstract

Abstract A ballistic compression type soft recovery system can stop a free-flying supersonic projectile in a controlled manner. The moment such a projectile enters the System, a normal shock gets created and starts hurtling down, to kick off a train of events involving shock reflections, diaphragm rupture, shock merger, creation of new shocks and contact discontinuities, and expansion wave-shock interactions. A good understanding of these phenomena and sensitivity of the System's performance to changes in design parameters is needed to design an efficient soft recovery system. Unfortunately, not much information is available about this. The present work fills this gap. We have developed a numerical model for the system and conducted sensitivity analyses using four design parameters; pressure, molecular weight, the ratio of specific heats, and temperature of gas used in the system. We show that while there is a strong, positive correlation between the first two parameters and projectile deceleration, the other two parameters are less critical. We conducted experiments to corroborate our conclusions and improve our numerical model. Post such improvements, we found the difference between simulation and experimental data to be acceptable. Experiments also confirmed the findings of our sensitivity studies. Finally, we conducted a two-dimensional finite volume analysis to understand the reasons underlying the residual difference between our numerical and experimental data. We show that such differences are due to pressure-rise at a point once a shock passes by it, and such a rise in pressure is attributable to boundary layer effects.

Publisher

ASME International

Subject

Mechanical Engineering

Reference29 articles.

1. Large Caliber Projectile Soft Recovery,1981

2. Soft Recovery of Large Calibre Flying Processors,2001

3. Duarte, G. M., 1975, “ Projectile Recovery Device,” US Patent 5,477,733.

4. Soft-Recovery of Explosively Formed Penetrators,2005

5. Development of a Soft Recovery System of Supersonic Projectiles;Eng. Trans.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3