Investigation of a High-Pressure Turbine Stage in a High-Speed Rotating Transient Test Facility for Rotor Tip Study and a Parametric Study for Improved Heat Transfer Calculation

Author:

Singh Deepanshu1,Beard Paul F.1,Cardwell David1,Chana Kam S.1

Affiliation:

1. Oxford Thermofluids Institute, Department of Engineering Science, University of Oxford , Oxford OX2 0ES, UK

Abstract

Abstract The first part of the paper presents commissioning of a single-stage high-pressure (HP) turbine employed in a series of extensive experiments to study the aerodynamics and heat transfer on the rotor surface and casing liner. The Oxford Turbine Research Facility (OTRF), a high-speed rotating transient test facility has the capability to take unsteady aerodynamic and heat transfer measurements at engine representative conditions with a variety of inlet temperature profiles including radial distortion and swirl. A temperature profile survey was conducted at the inlet of the HP nozzle guide vane (NGV). Static and total pressure and temperature measurements have been taken at various locations on the rig including NGV surface, inlet and exit, and rotor exit to establish rig operating conditions. Detailed description of mass flow rate measurements along with calculation of heat loss factor in the rig is presented. The second part of the paper presents a parametric study performed to improve heat transfer measurement calculations from high-frequency response thin-film gauges. The effect of parameters like material properties and thickness of substrate on heat flux has been studied. A detailed uncertainty analysis for heat flux is also presented. A thermal model calibrated with analytical solutions has been developed to optimize thin-film gauge configurations and to study side-conduction effects.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference19 articles.

1. Impact of Combustor Generated Temperature Distortions on Performance, Durability and Structural Integrity of Turbines,1998

2. Installation of a Turbine Stage in the Pyestock Isentropic Light Piston Facility,1994

3. Aerodynamic Optimization of High-Pressure Turbines for Lean-Burn Combustion System;ASME J. Eng. Gas Turbines Power,2013

4. Mass Flow Rate Measurement in a Transonic Turbine Test Facility With Temperature Distortion and Swirl;Flow Meas. Instrum.,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3