Critical Situations of Vessel Operations in Short Crested Seas—Forecast and Decision Support System

Author:

Clauss Günther F.1,Kosleck Sascha1,Testa Daniel1

Affiliation:

1. Ocean Engineering Department, Technical University Berlin, Salzufer 17-19, SG 17, 10587 Berlin, Germany

Abstract

The encounter of extreme waves, extreme wave groups, or unfavorable wave sequences poses dangerous threats for ships and floating/stationary marine structures. The impact of extreme waves causes enormous forces, whereas an unfavorable wave sequence—not necessarily extreme waves—can arouse critical motions or even resonance, often leading to loss of cargo, ship, or crew. Thus, besides a well thought-out maritime design, a system detecting critical incoming wave sequences in advance can help avoiding those dangerous situations, increasing the safety of sea transport or offshore operations. During the last two years a new system for decision support onboard a ship or floating/fixed marine structure named CASH—Computer Aided Ship Handling—has been introduced. The preceding papers showed the step wise development of the main components of the program code—3d-wave forecast and 3d-ship motion forecast. These procedures provide a deterministic approach to predict the short crested seas state within radar range of the ship, as well as resulting ship motions in six degrees of freedom. Both methods have been enhanced with special focus on the speed of calculation to ensure a just-in-time forecast. A newly developed component is the adaptive 3d-pressure distribution. This method calculates the pressure distribution along the wetted surface of the ship hull using a newly developed stretching approach. With the end of the joint project Loads on Ships in Seaway (LaSSe), (funded by the German Government) the paper presents the CASH system, giving the possibility to detect critical situations in advance. Thus not only decision support onboard a cruising ship can be provided, but also time windows for offshore operations are identified well in advance.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3