Affiliation:
1. Department of Chemical Engineering, High Temperature Chemical Reaction Engineering Laboratory, Yale University, New Haven, Conn. 06520
2. Applied Mechanics Section, High Temperature Chemical Reaction Engineering Laboratory, Yale University, New Haven, Conn. 06520
Abstract
Based on the importance of thermophoretic drift in transporting small particles across a turbulent thermal boundary layer, and the relatively small Brownian diffusivity of such particles, we present a simple asymptotic theory of particulate transport to aerodynamically smooth, solid surfaces cooled below, Te, the mainstream gas temperature. Numerical calculations based on a law-of-the-wall equilibrium velocity profile, and the assumption that the effective eddy diffusivities for mass, energy, and momentum diffusion are equal, are well-represented by −m˙p″≈ρeueωp,e•Sth•(αTLe)w[(Te−Tw)/Tw]{1+[(Te−Tw)/Tw]•[0.07+0.93(αTLew]} where Sth is the local heat-transfer coefficient (Stanton number) and (αTLe)w is the ratio of the particle thermophoretic diffusivity to the gas mixture heat diffusivity. While currently being extended to cover particle size ranges for which (i) the Brownian diffusion sublayer is not negligible in thickness compared to the viscous sublayer, or (ii) eddy impaction sets in, the present theory provides a rational improvement over previous estimates, and explains several important features of the recent data of Nomura et al [1] on the fouling rate of internally air-cooled, gas turbine blades exposed to the products of combustion of Vanadium-containing residual fuel oil.
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献