Affiliation:
1. Department of Mechanical and Industrial Engineering, University of Massachusetts Lowell , Lowell, MA 01854
Abstract
Abstract
Detailed chemical kinetics calculations can be very computationally expensive, and so various approaches have been used to speed up combustion calculations. Deep neural networks (DNNs) are one promising approach that has seen significant development recently. Standard DNNs, however, do not necessarily follow physical constraints such as conservation of mass. Physics Informed Neural Networks (PINNs) are a class of neural networks that have physical laws embedded within the training process to create networks that follow those physical laws. A new PINN-based DNN approach to chemical kinetics modeling has been developed to make sure mass fraction predictions adhere to the conservation of atomic species. The approach also utilizes a mixture-of-experts (MOE) architecture where the data is distributed on multiple subnetworks followed by a softmax selective layer. The MOE architecture allows the different subnetworks to specialize in different thermochemical regimes, such as early stage ignition reactions or post-flame equilibrium chemistry, then the softmax layer smoothly transitions between the subnetwork predictions. This modeling approach was applied to the prediction of methane-air combustion using the GRI-Mech 3.0 as the reference mechanism. The training database was composed of data from 0D ignition delay simulations under initial conditions of 0.2–50 bar pressure, 500–2000 K temperature, an equivalence ratio between 0 and 2, and an N2-dilution percentage of up to 50%. A wide variety of network sizes and architectures of between 3 and 20 subnetworks and 6,600 to 77,000 neurons were tested. The resulting networks were able to predict 0D combustion simulations with similar accuracy and atomic mass conservation as standard kinetics solvers while having a 10-50× speedup in online evaluation time using CPUs, and on average over 200× when using a GPU.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Reference43 articles.
1. Toward Accommodating Realistic Fuel Chemistry in Large-Scale Computations;Prog. Energy Combust. Sci.,2009
2. On Upgrading the Numerics in Combustion Chemistry Codes;Combust. Flame,2002
3. Faster Solvers for Large Kinetic Mechanisms Using Adaptive Preconditioners;Proc. Combust. Inst.,2015
4. Three-Dimensional Modeling of Nox and Soot Formation in di-Diesel Engines Using Detailed Chemistry Based on the Interactive Flamelet Approach,1996
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献