Accelerating Chemical Kinetics Calculations With Physics Informed Neural Networks

Author:

Almeldein Ahmed1,Van Dam Noah1

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Massachusetts Lowell , Lowell, MA 01854

Abstract

Abstract Detailed chemical kinetics calculations can be very computationally expensive, and so various approaches have been used to speed up combustion calculations. Deep neural networks (DNNs) are one promising approach that has seen significant development recently. Standard DNNs, however, do not necessarily follow physical constraints such as conservation of mass. Physics Informed Neural Networks (PINNs) are a class of neural networks that have physical laws embedded within the training process to create networks that follow those physical laws. A new PINN-based DNN approach to chemical kinetics modeling has been developed to make sure mass fraction predictions adhere to the conservation of atomic species. The approach also utilizes a mixture-of-experts (MOE) architecture where the data is distributed on multiple subnetworks followed by a softmax selective layer. The MOE architecture allows the different subnetworks to specialize in different thermochemical regimes, such as early stage ignition reactions or post-flame equilibrium chemistry, then the softmax layer smoothly transitions between the subnetwork predictions. This modeling approach was applied to the prediction of methane-air combustion using the GRI-Mech 3.0 as the reference mechanism. The training database was composed of data from 0D ignition delay simulations under initial conditions of 0.2–50 bar pressure, 500–2000 K temperature, an equivalence ratio between 0 and 2, and an N2-dilution percentage of up to 50%. A wide variety of network sizes and architectures of between 3 and 20 subnetworks and 6,600 to 77,000 neurons were tested. The resulting networks were able to predict 0D combustion simulations with similar accuracy and atomic mass conservation as standard kinetics solvers while having a 10-50× speedup in online evaluation time using CPUs, and on average over 200× when using a GPU.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference43 articles.

1. Toward Accommodating Realistic Fuel Chemistry in Large-Scale Computations;Prog. Energy Combust. Sci.,2009

2. On Upgrading the Numerics in Combustion Chemistry Codes;Combust. Flame,2002

3. Faster Solvers for Large Kinetic Mechanisms Using Adaptive Preconditioners;Proc. Combust. Inst.,2015

4. Three-Dimensional Modeling of Nox and Soot Formation in di-Diesel Engines Using Detailed Chemistry Based on the Interactive Flamelet Approach,1996

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3