A Cooling Efficiency Model and Numerical Research of Multiparameter Film Cooling

Author:

Xu Zhexuan1,Xu Zheyao2,Chen Yukun3

Affiliation:

1. Shenyang University of Technology School of Mechanical Engineering, , Shenyang 110870 , China

2. Beijing Institute of Astronautical Systems Engineering , Beijing 100076 , China

3. CASIC Space Engineering Development Co. Ltd , Beijing 100039 , China

Abstract

Abstract Based on the validated simulation method of film cooling and multiphase flow simulation method, a multi-level three-dimensional simulation of forward-leaning fan-shaped film hole, cylindrical film hole with different injection angles, and film hole containing water vapor are established to discuss the effects of film hole structure parameters, hole distance, blowing ratio, injection angle, and water vapor volume on film cooling efficiency. The cooling efficiency of forward-leaning fan-shaped film hole increases as the exit length of film hole increases. After adding water vapor, the cooling efficiency of fan-shaped film hole decreases, and the influence of hole axis length and exit length on cooling efficiency is weak. For the cylindrical film hole, the larger the injection angle of film hole, the larger the film coverage area under the same blowing ratio. After adding water vapor, with the increase of the blowing ratio, the film coverage area increases first and then decreases. However, the film coverage area decreases with the increase of cooling injection angle for film holes containing water vapor. The cooling efficiency of the film hole with and without water vapor is related to the vapor velocity in the rising direction and the velocity in the mainstream direction, respectively. A model of film cooling efficiency with air blowing ratio and injection angle is established and verified with experimental data, based on the law that the average cooling efficiency in the main flow direction grows exponentially with the sine of the injection angle.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3