Subcooled Pool Boiling in Variable Gravity Environments

Author:

Raj Rishi1,Kim Jungho1,McQuillen John2

Affiliation:

1. Department of Mechanical Engineering, University of Maryland, College Park, MD 20742

2. NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH 44135

Abstract

Virtually all data to date regarding parametric effects of gravity on pool boiling have been inferred from experiments performed in low-g, 1g, or 1.8g conditions. The current work is based on observations of boiling heat transfer obtained over a continuous range of gravity levels (0g–1.8g) under subcooled liquid conditions (n-perfluorohexane, ΔTsub=26°C, and 1 atm), two gas concentrations (220 ppm and 1216 ppm), and three heater sizes (full heater-7×7 mm2, half heater-7×3.5 mm2, and quarter heater-3.5×3.5 mm2). As the gravity level changed, a sharp transition in the heat transfer mechanism was observed at a threshold gravity level. Below this threshold (low-g regime), a nondeparting primary bubble governed the heat transfer and the effect of residual gravity was small. Above this threshold (high-g regime), bubble growth and departure dominated the heat transfer and gravity effects became more important. An increase in noncondensable dissolved gas concentration shifted the threshold gravity level to lower accelerations. Heat flux was found to be heater size dependent only in the low-g regime.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference39 articles.

1. Overview of Pool Boiling Heat Transfer Studies in Variable Gravity;Arlabosse

2. Pool Boiling in Accelerating Systems;Merte;ASME J. Heat Transfer

3. Effect of Acceleration on Nucleate Pool Boiling;Costello;Chem. Eng. Prog., Symp. Ser.

4. Review of Reduced Gravity Boiling Heat Transfer: European Research;Di Marco;J. Jpn. Soc. Microgravity Appl.

5. Review of Reduced Gravity Boiling Heat Transfer: US Research;Kim;J. Jpn. Soc. Microgravity Appl.

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3