A Bayesian Sampling Method for Product Feature Extraction From Large-Scale Textual Data

Author:

Lim Sunghoon1,Tucker Conrad S.2

Affiliation:

1. Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, PA 16802 e-mail:

2. Mem. ASME Engineering Design and Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, PA 16802 e-mail:

Abstract

The authors of this work propose an algorithm that determines optimal search keyword combinations for querying online product data sources in order to minimize identification errors during the product feature extraction process. Data-driven product design methodologies based on acquiring and mining online product-feature-related data are presented with two fundamental challenges: (1) determining optimal search keywords that result in relevant product related data being returned and (2) determining how many search keywords are sufficient to minimize identification errors during the product feature extraction process. These challenges exist because online data, which is primarily textual in nature, may violate several statistical assumptions relating to the independence and identical distribution of samples relating to a query. Existing design methodologies have predetermined search terms that are used to acquire textual data online, which makes the resulting data acquired, a function of the quality of the search term(s) themselves. Furthermore, the lack of independence and identical distribution of text data from online sources impacts the quality of the acquired data. For example, a designer may search for a product feature using the term “screen,” which may return relevant results such as “the screen size is just perfect,” but may also contain irrelevant noise such as “researchers should really screen for this type of error.” A text mining algorithm is introduced to determine the optimal terms without labeled training data that would maximize the veracity of the data acquired to make a valid conclusion. A case study involving real-world smartphones is used to validate the proposed methodology.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3