State-of-The-Art Cooling and Lubrication for Machining Inconel 718

Author:

De Bartolomeis Andrea1,Newman Stephen T.1,Biermann Dirk2,Shokrani Alborz1

Affiliation:

1. Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK

2. Institut für Spanende Fertigung, Technische Universität Dortmund, Dortmund 44227, Germany

Abstract

Abstract Inconel 718 is the most used nickel superalloys with applications in aerospace, oil and gas, nuclear, and chemical industries. It is mostly used for safety-critical components where the condition of the surface is a significant concern. The combination of mechanical, thermal, and chemical properties of Inconel 718 has made it a difficult-to-machine material. Despite recent advances in machining Inconel 718, achieving desired surface integrity with prescribed properties is still not possible. Different machining environments have been investigated for improving the machinability of Inconel 718 and enhance the surface integrity of machined components. This paper provides a new investigation and classification into recent advances in the machining of Inconel 718 regarding surface integrity, mostly concentrated on turning applications. The major findings and conclusions provide a critique of the state-of-the-art in machining environments for Inconel 718 together with future directions for research. Surface integrity has been evaluated in terms of surface topology as well as mechanical and microstructural properties. The impact of various cooling and lubrication methods has been investigated. It has been found that surface integrity is affected by the thermomechanical conditions at the cutting zone which are influenced by the cutting parameters, cutting tool, tool wear, and cooling/lubrication condition. The current technologies are incapable of delivering both productivity and sustainability while meeting surface integrity requirements for machining Inconel 718. High-pressure cooling has shown the potential to enhance tool wear at the expense of higher power consumption.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3