Drag-Reduction and Resonance Problems of a Jointed Drillstring in the Presence of an Axial Excitation Tool

Author:

Wang Xueying1,Ni Hongjian2,Wang Ruihe3,Zhang Lei1,Wang Peng1

Affiliation:

1. Research Institute of Unconventional Oil & Gas and Renewable Energy, China University of Petroleum, Qingdao 266580, China

2. Research Institute of Unconventional Oil & Gas and Renewable Energy, China University of Petroleum, Qingdao 266580, China e-mail address:

3. School of Petroleum Engineering, China University of Petroleum, Qingdao 266580, China

Abstract

Axial excitation tools (AETs) have the ability to improve slide-drilling efficiency by reducing the friction between the drillstring and the wellbore wall. However, drag-reduction effects are not always satisfactory, and excessive vibration may cause failures of downhole tools in some cases. Thus, a mathematical model was proposed to simulate the vibration responses of a drillstring. In the model, velocity-dependent friction is adopted to calculate the friction-reduction effect. The effect of drillstring joints on the weight on bit (WOB) was first investigated. The simulation results indicate that the joints intensify the stick-slip motion of the drillstring system. The effect of the location of an AET was then examined. The results show that it is better to place an AET near the drill bit rather than near the rear of a build section. Because the frictional drag acting on the lower portion of the drillstring dominates the axial stick-slip motion of a drill bit. Finally, the resonance responses were examined in terms of the drillstring system acceleration. The results show that resonance moderately increases the accelerations of a long horizontal drillstring system in a heavy-damping environment but that the growth of the exciting force can profoundly increase the accelerations.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3