Optical Observation of the Supercavitation Induced by High-Speed Water Entry

Author:

Shi Hong-Hui1,Itoh Motoyuki1,Takami Takuya1

Affiliation:

1. Department of Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 Japan

Abstract

When a high-speed projectile penetrates into water, a cavity is formed behind the projectile. The gas enclosed in the cavity experiences a nonequilibrium process, i.e., the gas pressure decreases as the projectile moves more deeply into water. As a result, the cavity is sealed near the free surface (surface closure) and subsequently the cavity breaks up in water (deep closure). Accompanying the break-up of the cavity, secondary shock waves appear. This is the so-called supercavitation in water entry. This paper describes an experimental investigation into the water entry phenomenon. Projectiles of 342 m/s were generated from a small-bore rifle that was fixed vertically in the experimental facility. The projectiles were fired into a windowed water tank. A shadowgraph optical observation was performed to observe the entry process of the projectile and the formation and collapse of the cavity behind the projectile. A number of interesting observations relating to the motion of the free surface, the splash, the underwater bubbly flow and so on were found. [S0098-2202(00)00204-2]

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3