Validation of Dynamic Models in the Time-Scale Domain

Author:

McCusker James R.1,Danai Kourosh1,Kazmer David O.2

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003

2. Department of Plastics Engineering, University of Massachusetts, Lowell, MA 01854

Abstract

Model validation is the procedure whereby the fidelity of a model is evaluated. The traditional approaches to dynamic model validation consider model outputs and observations as time series and use their similarity to assess the closeness of the model to the process. A common measure of similarity between the two time series is the cumulative magnitude of their difference, as represented by the sum of squared (or absolute) prediction error. Another important measure is the similarity of shape of the time series, but that is not readily quantifiable and is often assessed by visual inspection. This paper proposes the continuous wavelet transform as the framework for characterizing the shape attributes of time series in the time-scale domain. The feature that enables this characterization is the multiscale differential capacity of continuous wavelet transforms. According to this feature, the surfaces obtained by certain wavelet transforms represent the derivatives of the time series and, hence, can be used to quantify shape attributes, such as the slopes and slope changes of the time series at different times and scales (frequencies). Three different measures are considered in this paper to quantify these shape attributes: (i) the Euclidean distance between the wavelet coefficients of the time series pairs to denote the cumulative difference between the wavelet coefficients, (ii) the weighted Euclidean distance to discount the difference of the wavelet coefficients that do not coincide in the time-scale plane, and (iii) the cumulative difference between the markedly different wavelet coefficients of the two time series to focus the measure on the pronounced shape attributes of the time series pairs. The effectiveness of these measures is evaluated first in a model validation scenario where the true form of the process is known. The proposed measures are then implemented in validation of two models of injection molding to evaluate the conformity of shapes of the models’ pressure estimates with the shapes of pressure measurements from various locations of the mold.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3