An Approach to Robotic Testing of the Wrist Using Three-Dimensional Imaging and a Hybrid Testing Methodology

Author:

Badida Rohit1,Garcia-Lopez Edgar1,Sise Claire2,Moore Douglas C.1,Crisco Joseph J.3

Affiliation:

1. Department of Orthopedics, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Brown University, Providence, RI 02903

2. Department of Biomedical Engineering, Brown University, Providence, RI 02912

3. Department of Biomedical Engineering, Brown University, Providence, RI 02912; Department of Orthopedics, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Brown University, Providence, RI 02903

Abstract

AbstractRobotic technology is increasingly used for sophisticated in vitro testing designed to understand the subtleties of joint biomechanics. Typically, the joint coordinate systems in these studies are established via palpation and digitization of anatomic landmarks. We are interested in wrist mechanics in which overlying soft tissues and indistinct bony features can introduce considerable variation in landmark localization, leading to descriptions of kinematics and kinetics that may not appropriately align with the bony anatomy. In the wrist, testing is often performed using either load or displacement control with standard material testers. However, these control modes either do not consider all six degrees-of-freedom (DOF) or reflect the nonlinear mechanical properties of the wrist joint. The development of an appropriate protocol to investigate complexities of wrist mechanics would potentially advance our understanding of normal, pathological, and artificial wrist function. In this study, we report a novel methodology for using CT imaging to generate anatomically aligned coordinate systems and a new methodology for robotic testing of wrist. The methodology is demonstrated with the testing of 9 intact cadaver specimens in 24 unique directions of wrist motion to a resultant torque of 2.0 N·m. The mean orientation of the major principal axis of range of motion (ROM) envelope was oriented 12.1 ± 2.7 deg toward ulnar flexion, which was significantly different (p < 0.001) from the anatomical flexion/extension axis. The largest wrist ROM was 98 ± 9.3 deg in the direction of ulnar flexion, 15 deg ulnar from pure flexion, consistent with previous studies [1,2]. Interestingly, the radial and ulnar components of the resultant torque were the most dominant across all directions of wrist motion. The results of this study showed that we can efficiently register anatomical coordinate systems from CT imaging space to robotic test space adaptable to any cadaveric joint experiments and demonstrated a combined load-position strategy for robotic testing of wrist.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3