Time Progression of Hemolysis of Erythrocyte Populations Exposed to Supraphysiological Temperatures

Author:

Moussa N. A.1,Tell E. N.2,Cravalho E. G.3

Affiliation:

1. Arthur D. Little, Inc., Acorn Park, Cambridge, Mass. 02140; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Mass. 02139

2. Douglas Aircraft Corporation, Huntington Beach, Calif.; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Mass. 02139

3. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Mass. 02139

Abstract

Populations of erythrocytes in solution were heated “instantaneously” to and maintained at temperatures in the range of 44 to 60°C on a microscope stage specifically designed for this purpose. Simultaneously, the visually observed hemolysis-time history of these cells was measured. The results were successfully correlated on the basis of two models: 1) a kinetic scheme assuming two sequential, first-order reactions by which the cells are first reversibly altered and then irreversibly damaged; and 2) a statistical model for which the number of cells that are damaged at each instant is assumed to be normally distributed. From the experimental data the rate constants for the two reactions in the kinetic model were determined and were found to have an Arrhenius dependence on temperature. By applying the statistical model to the data, we were able to determine the mean and standard deviation of the distribution curve for this model. The logarithms of these latter two parameters vary with temperature in a linear fashion.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3