Characterization of Magnetorheological Brake in Shear Mode Using High-Strength MWCNTs and Fumed Silica-Based Magnetorheological Fluids at Low Magnetic Fields

Author:

Singh Rakesh Kumar1,Sarkar Chiranjit1

Affiliation:

1. Indian Institute of Technology Department of Mechanical Engineering, , Patna 801103 , India

Abstract

Abstract The performance of magnetorheological (MR) brakes is dependent on the MR characteristics of the braking fluid, working parameters, and magnetic fields. Due to the size limitations, it is quite difficult to use large-sized electromagnet for a high magnetic field inside an MR brake and thus working parameters indirectly affect the MR properties of MR fluid. Again, MR fluids show thermal thinning with working temperature. Therefore, in the present study, MR fluids that have stable MR properties at high temperatures and can provide better braking torque at low magnetic fields are prepared. To improve the MR properties at high temperature, multi-walled carbon nanotubes (MWCNTs) which have high thermal conductivity are used as additives, and initially, three MR fluids are synthesized by varying MWCNT fractions. The MR properties of these fluids are examined and plotted using magnetorheometer. The effective fraction of MWCNTs at which MR fluid has stable MR properties with temperature is identified. It is found that MR fluid which consists of 0.25% fractions of MWCNTs has large yield strength but only at high magnetic fields. To improve its MR properties at a lower magnetic field, 0.5% fraction of fumed silica is mixed with 0.25% fractions of MWCNTs. Then, a fabricated MR disc brake is characterized using those prepared magnetorheological fluids (MRFs). The braking torque of MRFs at different speeds is presented and compared. It is found that approximately 26% more braking torque is offered by fumed silica + MWCNTs-based MR fluid in comparison to other MRFs at 1200 RPM.

Funder

Science and Engineering Research Board

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3