Engineering Nanorobots: Chronology of Modeling Flagellar Propulsion

Author:

Rathore J. S.1,Sharma N. N.1

Affiliation:

1. Mechanical Engineering Group, Birla Institute of Technology and Science, Pilani 333031, India

Abstract

Nanorobots are propitious to swim or fly compared with crawling and walking because of issues with desirable characteristics of high velocity, efficiency, specificity, controllability, and a simple propagation mechanism that can be realized with miniaturized parts. Inspired by the fact that microorganisms existing in nature function expeditiously under these circumstances, researchers have shown a great interest to conceptualize, model, analyze, and make micro-/nanosized swimmers (nanorobots) that can move in body fluids for applications such as targeted drug delivery, nanomedication, and in-viscera nanosurgery. The present work compiles modeling of physics as investigated since 1951 of flagellar propulsion in engineering nanorobots. Existing theories in flagellar propulsion such as resistive force theory, slender body theory, Kirchhoff rod theory, bead model, and boundary element method as well as progress in designing the propulsion system of a nanorobot are summarized, and various interdisciplinary aspects of realizing nanorobots and issues in moving nanorobots have been presented chronologically.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,General Materials Science,General Medicine

Reference101 articles.

1. Nanorobot Movement: Challenges and Biologically Inspired Solutions;Sharma;Int. J. Smart Sensing and Intelligent Systems

2. Nanofabrication Challenges for NEMS;Zheng

3. Trends in Development of Modern Silicon Nanoelectronics;Zhuhai

4. Recent Advances in Nanotechnology: Key Issues and Potential Problem Areas;Gupta

5. The Highlights in the Nano World;Chang;Proc. IEEE

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3