Damage Modeling in Random Short Glass Fiber Reinforced Composites Including Permanent Strain and Unilateral Effect

Author:

Mir Hicham1,Fafard Mario1,Bissonnette Benoı^t1,Dano Marie-Laure1

Affiliation:

1. Department of Civil Engineering, Universite´ Laval, Que´bec City, Quebec G1K 7P4, Canada

Abstract

This paper presents the development of a theoretical damage mechanics model applicable to random short glass fiber reinforced composites. This model is based on a macroscopic approach using internal variables together with a thermodynamic potential expressed in the stress space. Induced anisotropic damage, nonsymmetric tensile/compressive behavior (unilateral effect) and residual effects (permanent strain) are taken into account. The anisotropic damage is represented with second-order tensorial internal variables D. The unilateral effect due to microcrack closure in compression is introduced by generalizing the hypothesis of the complementary elastic energy equivalence. In the case of the permanent strain, a new term related to frozen energy, which is a function of the damage variable, the stress tensor, and some materials constants to be identified, is added to the basic thermodynamic potential. Using laboratory test results, parameter identification has been performed to illustrate the applicability of the proposed model.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3