Wave Energy Converter Optimal Design Under Parameter Uncertainty

Author:

Giorcelli Filippo1,Sirigu Sergej Antonello1,Pasta Edoardo1,Gioia Daniele Giovanni1,Bonfanti Mauro1,Mattiazzo Giuliana1

Affiliation:

1. Politecnico di Torino , Torino, Italy

Abstract

Abstract In the field of renewable technologies, the possibility to obtain energy exploiting seas and oceans’ wave motion has been known for a long time. Devices that transform wave energy into electric energy exploiting wave motion are called Wave Energy Converters (WEC). Following the design studies carried out in recent years, the research now proceeds towards the development of useful processes for the optimization of these devices. In this work we develop a preliminary robust optimal design process for the WEC system devices, in order to increase their reliability and robustness. Robust optimal design is a probabilistic optimization method for realistic optimization problems, in which, the uncertainty that occurs between real-world implementations and their ideal project value is taken into account. This method studies these parameters and finds suitable solutions to avoid unsatisfactory system performances and designs which can compromise their performances. Therefore, the process final purpose is to obtain a robust optimum instead of a global optimum. In this work, we developed the robust design optimization strategy for the design of a pitching wave energy converter, able to minimize its Levelized Cost of Energy (LCoE). This is done exploiting information given by two selected robustness indexes.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards efficient control synthesis for nonlinear wave energy conversion systems: impedance-matching meets the spectral-domain;Nonlinear Dynamics;2024-05-11

2. A Multi-objective Heuristic Approach for 3D Hydrofoil Design;2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME);2022-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3