On-Line Tool Wear Estimation Using Force Measurement and a Nonlinear Observer

Author:

Park Jong-Jin1,Ulsoy A. Galip1

Affiliation:

1. Department of Mechanical Engineering and Applied Mechanics, The University of Michigan, Ann Arbor, MI 48109-2125

Abstract

On-line tool wear monitoring in metal-cutting operations is essential for an on-line process optimization. In this paper, tool flank wear is estimated on-line by utilizing a nonlinear observer with the feedback of cutting force measurements. Based on a previously developed cutting process model for turning, a nonlinear observer is designed such that the estimated flank wear converges to the actual flank wear development in the presence of poor initial estimates. The stability analysis for the resulting observer error dynamic system is carried out using a physical limitation of the actual flank wear development and the Total Stability Theorem. The experimental results show that the proposed nonlinear observer estimates the flank wear quite well not only in the presence of poor initial estimates but also in the presence of unexpected fluctuations in the cutting force measurements. However, the method has drawbacks resulting from difficulties in obtaining accurate model parameters. An adaptive version of the presented nonlinear observer, periodically calibrated by off-line direct tool wear measurements using computer vision, is considered to be a promising strategy for industrial implementation.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tool condition monitoring: unscented Kalman filter for tool flank wear estimation in turning of Inconel 718;Machining Science and Technology;2021-01-15

2. A Review of Manufacturing Process Control;Journal of Manufacturing Science and Engineering;2020-09-28

3. Control of Machine Tools and Machining Processes;The Control Handbook, Second Edition;2010-12-08

4. Development of a tool wear observer model for online tool condition monitoring and control in machining nickel-based alloys;The International Journal of Advanced Manufacturing Technology;2009-03-17

5. Distributed fault detection in industrial system based on sensor wireless network;Computer Standards & Interfaces;2009-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3