Generation Mechanism and Quality of Milling Surface Profile for Variable Pitch Tools Considering Runout

Author:

Niu Jinbo1,Jia Jinjie1,Sun Yuwen1,Guo Dongming1

Affiliation:

1. Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China

Abstract

Abstract Surface profile is one of the foremost aspects to evaluate milling performance. Its generation mechanism is affected by a variety of factors such as tool geometry, runout values, and process parameters and thus still deserves further investigation. This paper aims to propose a unified method to study the surface generation mechanism and to predict the machining quality for variable pitch tools considering runout. First, a Floquet theory based algorithm is extended to analyze the machining stability and output the dynamic responses of the machining system. The resultant trajectories of cutting edges are obtained by kinematic synthesis of system vibrations, tool rotations, and machining feed. Next, both the surface location error (SLE) and the surface roughness are simultaneously extracted from the edge trajectories. A series of cutting tests are performed to validate the prediction results. Some new characteristics of the machined surface profile in terms of form errors and teeth marks are discovered and theoretically explained. Finally, the joint influences of tool geometry, runout values, and process parameters on the surface generation mechanism and quality are analyzed in detail with the proposed method.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3