Improving Students' Functional Modeling Skills: A Modeling Approach and a Scoring Rubric

Author:

Nagel Robert L.1,Bohm Matt R.2,Linsey Julie S.3,Riggs Marie K.2

Affiliation:

1. Department of Engineering, James Madison University, MSC 4113, HHS 3224, Harrisonburg, VA 22807 e-mail:

2. Department of Mechanical Engineering, University of Louisville, 200 Sackett Hall, Louisville, KY 40292 e-mail:

3. George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr., MaRC Building, Room 253, Atlanta, GA 30332 e-mail:

Abstract

An engineering design curriculum that introduces functional modeling methods is believed to enhance the ability to abstract complex systems, assist during the concept generation phase of design, and reduce design fixation. To that end, a variety of techniques for considering function during design have been proposed in the literature, yet there are a lack of validated approaches for teaching students to generate functional models and no reliable method for the assessment of functional models. This paper presents a study investigating students' ability to generate functional models during a homework assignment; the study includes three different treatment conditions: (1) students who receive only a lecture on functional modeling, (2) students who receive a lecture on functional modeling as well as a step-by-step example, and (3) students who receive a lecture, a step-by-step example, and an algorithmic approach with grammar rules. The experiment was conducted in a cornerstone, undergraduate engineering design course, and consequently, was the students' first exposure to functional modeling. To assess student generated functional models across all three conditions, an 18 question functional model scoring rubric was developed based on flow-based functional modeling standards. Use of the rubric to assess the student generated functional models resulted in high inter-rater agreement for total score. Results show that students receiving the step-by-step example perform as well as students receiving the step-by-step example and an algorithmic approach with grammar rules; both groups perform better than the lecture-only group.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3