A Model of Full Penetration Arc-Welding for Control System Design

Author:

Hardt D. E.1,Garlow D. A.1,Weinert J. B.1

Affiliation:

1. Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, Cambridge, Mass. 02139

Abstract

A model of the dynamics of full penetration welding is presented that relates the heat input to the resulting width of the backbead. It is developed from a heat balance using the pool as a control volume, and is applicable primarily to autogenous gas-tungsten arc welding (GTAW). Two means of modulating the input are considered: 1) varying the torch current and 2) varying the torch travel velocity. The proposed model in both cases is first order, but it has non-constant) parameters (i.e., gain and time constant). Regardless of which input is used, the gain and time constant of the system are shown to depend strongly upon the thickness of the material, the preheat temperature, and the nominal torch velocity. These trends were confirmed in a series of open-loop step tests, where gain and time constant were directly measured, and in closed-lop tests, where step and frequency response methods were used. The resulting model permits rational high performance controller design, and the variable parameters of the system suggest the need for parameter adaptive control.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3