Transmission Welding of Glass by Femtosecond Laser: Mechanism and Fracture Strength

Author:

Kongsuwan Panjawat1,Satoh Gen1,Yao Y. Lawrence2

Affiliation:

1. Department of Mechanical Engineering, Columbia University, New York, NY 10027

2. Manufacturing Research Laboratory, Department of Mechanical Engineering, Columbia University, New York, NY 10027

Abstract

Femtosecond laser pulses were focused on the interface of two glass specimens. Proper use of optical and laser processing parameters enables transmission welding. The morphology of the weld cross section was studied using differential interference contrast optical microscopy. In addition, a numerical model was developed to predict the absorption volumes of femtosecond laser pulses inside a transparent material. The model takes into account the temporal and spatial characteristics and propagation properties of the laser beam, and the transmission welding widths were subsequently compared with the absorption widths predicted by the model. The model can lead to the achievement of a desirable weld shape through understanding the effects of laser pulse energy and numerical aperture on the shape of the absorption volume. The changes in mechanical properties of the weld seams were studied through spatially resolved nanoindentation, and indentation fracture analysis was used to investigate the strength of the weld seams.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3