Linear Moments-Based Monte Carlo Simulation for Reliability Analysis With Unknown Probability Distributions

Author:

Zhang Long-Wen1ORCID,Zhao Yan-Gang23

Affiliation:

1. College of Water Resources & Civil Engineering, Hunan Agricultural University, Changsha 410128, China

2. Department of Architecture, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku , Yokohama 221-8686, Japan; Beijing 100124, China

3. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, 3-27-1 Rokkakubashi, Kanagawa-ku , Yokohama 221-8686, Japan; Beijing 100124, China

Abstract

Abstract Within the realm of structural reliability analysis, the uncertainties tied to resistance and loads are conventionally embodied as random variables possessing established cumulative distribution functions (CDFs). Nevertheless, real-world scenarios often involve cases where the CDFs of random variables are unknown, necessitating the probabilistic traits of these variables solely through statistical moments. In this study, for the purpose of integrating random variables characterized by an unknown CDF into the framework of Monte Carlo simulation (MCS), a linear moments (L-moments)-based method is proposed. The random variables marked by an unknown CDF are rendered as a straightforward function of a standard normal random variable, and the formulation of this function is determined by utilizing the L-moments, which are typically attainable from the statistical data of the random variables. By employing the proposed approach, the generation of random numbers associated with variables with unknown CDFs becomes a straightforward process, utilizing those derived from a standard normal random variable constructed by using Box-Muller transform. A selection of illustrative examples is presented, in which the efficacy of the technique is scrutinized. This examination reveals that despite its simplicity, the method demonstrates a level of precision that qualifies it for incorporating random variables characterized by unspecified CDFs within the framework of MCS for purposes of structural reliability analysis.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3