Real-Time Variable Geometry Triaxial Gas Turbine Model for Hardware-in-the-Loop Simulation Experiments

Author:

Wang Tao1,Tian Yong-Sheng2,Yin Zhao2,Zhang Da-Yue2,Ma Ming-Ze3,Gao Qing1,Tan Chun-Qing1

Affiliation:

1. Institute of Engineering Thermophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100190, China e-mail:

2. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China e-mail:

3. Energy and Power Engineering College, Inner Mongolia University of Technology, Huhhot 010080, China e-mail:

Abstract

This paper proposes a hybrid method (HMRC) comprised of a radial basis function (RBF) neural net algorithm and component-level modeling method (CMM) as a real-time simulation model for triaxial gas turbines with variable power turbine guide vanes in matlab/simulink. The sample size is decreased substantially after analyzing the relationship between high and low pressure shaft rotational speeds under dynamic working conditions, which reduces the computational burden of the simulation. The effects of the power turbine rotational speed on overall performance are also properly accounted for in the model. The RBF neural net algorithm and CMM are used to simulate the gas generator and power turbine working conditions, respectively, in the HMRC. The reliability and accuracy of both the traditional single CMM model (SCMM) and HMRC model are verified using gas turbine experiment data. The simulation models serve as a controlled object to replace the real gas turbine in a hardware-in-the-loop simulation experiment. The HMRC model shows better real-time performance than the traditional SCMM model, suggesting that it can be readily applied to hardware-in-the-loop simulation experiments.

Funder

Chinese Academy of Sciences

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3