Affiliation:
1. Department of Mechanical Engineering, Sahand University of Technology, Tabriz 53317-11111, Iran
Abstract
This study presents combined effects of couple stress fluids and rotational inertia together with considering lubricant viscosity variation with pressure in squeeze film characteristics of parallel annular plates. Squeeze film characteristics are obtained by combined solution of modified Reynolds equation and Stoke's microcontinuum for couple stress fluids with consideration of viscosity variation with pressure. Various cases of couple stress, inertial, and noninertial characteristics with isoviscous and piezoviscous contributions are investigated. The pressure distribution and load-carrying capacity for lubricant film are obtained in a closed form, using a small perturbation method. Furthermore, numerical solution of the film height versus response time is calculated employing the fourth-order Runge–Kutta method. The result shows that the combined effects of couple stresses and viscosity–pressure dependency improve the load-carrying capacity and lengthen the response time, as compared to the classical Newtonian lubricant with constant viscosity. However, increasing rotational inertia parameter decreases squeeze film characteristics.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献