Investigation of Combined Effects of Rotational Inertia and Viscosity–Pressure Dependency on the Squeeze Film Characteristics of Parallel Annular Plates Lubricated by Couple Stress Fluid

Author:

Daliri M.1,Jalali-Vahid D.1

Affiliation:

1. Department of Mechanical Engineering, Sahand University of Technology, Tabriz 53317-11111, Iran

Abstract

This study presents combined effects of couple stress fluids and rotational inertia together with considering lubricant viscosity variation with pressure in squeeze film characteristics of parallel annular plates. Squeeze film characteristics are obtained by combined solution of modified Reynolds equation and Stoke's microcontinuum for couple stress fluids with consideration of viscosity variation with pressure. Various cases of couple stress, inertial, and noninertial characteristics with isoviscous and piezoviscous contributions are investigated. The pressure distribution and load-carrying capacity for lubricant film are obtained in a closed form, using a small perturbation method. Furthermore, numerical solution of the film height versus response time is calculated employing the fourth-order Runge–Kutta method. The result shows that the combined effects of couple stresses and viscosity–pressure dependency improve the load-carrying capacity and lengthen the response time, as compared to the classical Newtonian lubricant with constant viscosity. However, increasing rotational inertia parameter decreases squeeze film characteristics.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3