Milling Force Prediction Model for Five-Axis Machining of Freeform Surface Considering Mesoscopic Size Effect

Author:

Guo Minglong1,Wei Zhaocheng1,Wang Minjie1,Wang Jia1,Liu Shengxian1

Affiliation:

1. Key Laboratory for Precision and Non-Traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China

Abstract

Abstract The core parts with the characteristic of freeform surface are widely used in the major equipment of various fields. Cutting force is the most important physical quantity in the five-axis CNC machining process of core parts. Not only in micro-milling, but also in macro-milling, there is also an obvious size effect, especially in medium- and high-speed milling, which is frequently ignored. In this paper, the milling force prediction model for five-axis machining of a freeform surface with a ball-end mill considering the mesoscopic size effect is established. Based on the characteristics of cutting thickness in macro-milling, a new dislocation density correction form is proposed, and a new experiment is designed to identify the dislocation density correction coefficient. Therefore, the shear stress calculated in this paper not only reflects the cutting dynamic mechanical characteristics but also considers the mesoscopic size effect. A linear function is proposed to describe the relationship between friction coefficient and cutting speed, cutter rake angle, and cutting thickness. Considering cutter run-out, the micro-element cutting force in the shear zone and plough zone are analyzed. The cutting geometry contact between the freeform surface and the ball-end mill is analyzed analytically by the space limitation method. Finally, the total milling force is obtained by summing all the force vectors of cutting edge micro-elements within the in-cut cutting edge. In the five-axis machining experiment of freeform surface, the theoretically predicted results of milling forces are in good agreement with the measured results in trend and amplitude.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cutting dynamics research on the five-axis machining of thin curved surface with barrel-taper-ball milling cutter;The International Journal of Advanced Manufacturing Technology;2024-02-21

2. Adiabatic shear behavior and cutting force prediction modeling of FV520B steel;The International Journal of Advanced Manufacturing Technology;2023-11-04

3. Reliability optimization of micro-milling cutting parameters using slime mould sequence algorithm;Simulation Modelling Practice and Theory;2022-09

4. Milling force prediction and optimization of process parameters in micro-milling of glow discharge polymer;The International Journal of Advanced Manufacturing Technology;2022-08-19

5. Reliability updating and parameter inversion of micro-milling;Mechanical Systems and Signal Processing;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3