On the Use of Spectral Averaging of Acoustic Emission Signals for Bearing Fault Diagnostics

Author:

Van Hecke Brandon1,He David1,Qu Yongzhi1

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607 e-mail:

Abstract

For years, vibration analysis has been the industry standard for bearing fault diagnosis. However, due to the various advantages over vibration based techniques, the quantification of acoustic emission (AE) for bearing health diagnosis has been an area of interest for recent years. Additionally, most AE based methodologies to date utilize data mining technologies. Presented in this paper is a new approach, combining a heterodyne based frequency reduction technique, time synchronous resampling, and spectral averaging to process AE signals and compute condition indicators (CIs) for bearing fault diagnostics. First, the heterodyne based frequency reduction technique allows the AE signal frequency to be down shifted from several MHz to less than 50 kHz, which approaches that of vibration based methodologies. Next, the sampled AE signals are band pass filtered to retain the useful information related to the bearing defects. Last, a trigger signal is utilized to time synchronously resample the AE signals to allow the calculation of a spectral average and the extraction and evaluation of CIs for bearing fault diagnosis. The technique presented in this paper is validated using the AE signals of seeded fault steel bearings on a bearing test rig. Presented is an effective AE based approach validated to diagnose all four fault types: inner race, outer race, ball, and cage. Moreover, the effectiveness of the presented approach is established through the comparison of both AE and vibration data.

Publisher

ASME International

Subject

General Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review of rotating machinery elements condition monitoring using acoustic emission signal;Expert Systems with Applications;2024-10

2. Improved signal processing for bearing fault diagnosis in noisy environments using signal denoising, time–frequency transform, and deep learning;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2023-10-09

3. Detection of Transients in Vibration Signals Using Reverse Dispersion Entropy;Journal of Vibration and Acoustics;2021-12-14

4. Vibration Response-Based Intelligent Non-Contact Fault Diagnosis of Bearings;Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems;2021-01-19

5. Fault Detection of Smart Grid Equipment Using Machine Learning and Data Analytics;Advances in Smart Grid Automation and Industry 4.0;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3