Biot Number Analogy for Design of Experiments in Turbine Cooling

Author:

Gomatam Ramachandran Saiprashanth1,Shih Tom I-P.1

Affiliation:

1. School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN 47907-2045 e-mail:

Abstract

Cooling of turbine components that come in contact with the hot gases strongly affects the turbine's efficiency and service life. Designing effective and efficient cooling configurations requires detailed understanding on how geometry and operating conditions affect the way coolant cools the turbine materials. Experimental measurements that can reveal such information are difficult and costly to obtain because gas turbines operate at high temperatures (up to 2000 K), high pressures (30+ bar), and the dimensions of many key features in the cooling configurations are small (millimeters or smaller). This paper presents a method that enables experiments to be conducted at near room temperatures, near atmospheric pressures, and using scaled-up geometries to reveal the temperature and heat-flux distributions within turbine materials as if the experiments were conducted under engine operating conditions. The method is demonstrated by performing conjugate computational fluid dynamics (CFD) analyses on two test problems. Both problems involve a thermal barrier coating (TBC)-coated flat plate exposed to a hot-gas environment on one side and coolant flow on the other. In one problem, the heat transfer on the coolant side is enhanced by inclined ribs. In the other, it is enhanced by an array of pin fins. This conjugate CFD study is based on 3D steady Reynolds-averaged Navier–Stokes (RANS) closed by the shear-stress-transport turbulence model for the fluid phase and the Fourier law for the solid phase. Results obtained show that, of the dimensionless parameters that are important to this problem, it is the Biot number that dominates. This study also shows that for two geometrically similar configurations, if the Biot number distributions on the corresponding hot-gas and coolant sides are nearly matched, then the magnitude and contours of the nondimensional temperature and heat-flux distributions in the material will be nearly the same for the two configurations—even though the operating temperatures and pressures differ considerably. Thus, experimental measurements of temperature and heat-flux distributions within turbine materials that are obtained under “laboratory” conditions could be scaled up to provide meaningful results under “engine” relevant conditions.

Publisher

ASME International

Subject

Mechanical Engineering

Reference21 articles.

1. Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure, and Properties;AIAA J. Propul. Power,2006

2. Thermal Barrier Coatings for Aerospace Applications;AIAA J. Propul. Power,2006

3. Internal and Film Cooling of a Flat Plate With Conjugate Heat Transfer,2007

4. Use of the Adiabatic Wall Temperature in Film Cooling to Predict Wall Heat Flux and Temperature,2008

5. Effects of Biot Number on Temperature Distribution in a Flat Plate Cooled by Rib-Enhanced Internal Cooling,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3