The Effect of Air Injection Method on the Airlift Pump Performance

Author:

Hu Dong1,Tang Chuan-Lin1,Cai Shu-Peng1,Zhang Feng-Hua1

Affiliation:

1. Modern Jetting Department, Hunan University of Technology, Wenhua Road, Zhuzhou City, Hunan Province, China, 412008

Abstract

With simple structure, excellent reliability, low cost, no restriction at depth of water, and easy control and operation, airlift pumps have special advantage in borehole hydraulic jet mining, river dredging and deep sea mining. To clarify the mechanism and process of action of air injection methods on air lift performance, and to enhance lifting capacity, the pump performance of a small airlift system in transporting river sands is investigated experimentally in the present study. The results are as the follows. The influences of air exit ports on water volume flow rate, mass flow rate of solids and lifting efficiency are studied and found to be very low when the number of air exit ports exceeds 3. The pump design show best pumping capability for water and solids at higher air flow rates, but the lifting efficiency is then very low. In addition, a dimensionless equation which describes the flows in the pipe is presented based on the Bernoulli equation, and compared with measurement results in the dimensionless form, which are nearly in good agreement with each other for all the arrangements of air exit ports and are basically contained within ±18% of the theoretical curve. The results are important for understanding the mechanism of airlift pumps and enriching multiphase flow theory.

Publisher

ASME International

Subject

Mechanical Engineering

Reference21 articles.

1. A Study of an Air-Lift Pump for Solid Particles;Kato;Bull. JSME

2. Transport of Solids According to the Air-Lift Principle;Weber

3. Lifting Characteristics of Manganese Nodules by Air-Lift-Pump on 200m Vertical Test Plant;Saito;IEEE

4. A Generalized Gas-Liquid-Solid Three-Phase Flow Analysis for Airlift Pump Design;Margaris;ASME J. Fluids Eng.

5. Numerical Analysis of Solid-Liquid-Air Three-Fluid Transient Flow for Air Lift System;Yoon

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3