Affiliation:
1. Hermann-Föttinger-Institute, Technical University Berlin, 10623 Berlin, Germany
2. Aerospace Engineering and Engineering Mechanics Department, University of Cincinnati, Cincinnati, OH 45221-0070
Abstract
Open-loop control methodologies were used to suppress symmetric and helical thermoacoustic instabilities in an experimental low-emission swirl-stabilized gas-turbine combustor. The controllers were based on fuel (or equivalence ratio) modulations in the main premixed combustion (premixed fuel injection (PMI)) or, alternatively, in the secondary pilot fuel. PMI included symmetric and asymmetric fuel injection. The symmetric instability mode responded to symmetric excitation only when the two frequencies matched. The helical fuel injection affected the symmetric mode only at frequencies that were much higher than that of the instability mode. The asymmetric excitation required more power to obtain the same amount of reduction as that required by symmetric excitation. Unlike the symmetric excitation, which destabilized the combustion when the modulation amplitude was excessive, the asymmetric excitation yielded additional suppression as the modulation level increased. The NOx emissions were reduced to a greater extent by the asymmetric modulation. The second part of the investigation dealt with the control of low frequency symmetric instability and high frequency helical instability by the secondary fuel injection in a pilot flame. Adding a continuous flow of fuel into the pilot flame controlled both instabilities. However, modulating the fuel injection significantly decreased the amount of necessary fuel. The reduced secondary fuel resulted in a reduced heat generation by the pilot diffusion flame and therefore yielded lower NOx emissions. The secondary fuel pulsation frequency was chosen to match the time scales typical to the central flow recirculation zone, which stabilizes the flame in the burner. Suppression of the symmetric mode pressure oscillations by up to 20dB was recorded. High frequency instabilities were suppressed by 38dB, and CO emissions reduced by using low frequency modulations with 10% duty cycle.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献