Affiliation:
1. University of Texas, Austin, Texas
Abstract
A Lyapunov-type approach is used to develop sufficient asymptotic stability conditions for linear systems with time-varying coefficients. In particular, it is shown that parametric disturbances of high frequency cannot create instability in an already asymptotically stable system. Also it is shown that slowly varying parametric disturbances will not cause instability if the system matrix is a stability matrix for all values of time. The results are applied to the Mathieu equation to illustrate the character of the theorems. This example is chosen because of the availability of its exact stability boundaries.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献