Affiliation:
1. Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
Abstract
Abstract
In this study, computational simulations have been performed to investigate the turbulent characteristics and energy consumption through heat exchanger tubes equipped by new perforated V-shaped rectangular winglet (PVRW) turbulators. The effects of the holes intensity on the velocity and temperature contours are additionally investigated. The Reynolds number, hole diameter ratio, and the number of holes selected are in the range of 5000 ≤ Re ≤ 18,000, 0 ≤ DR ≤ 0.40, and 0 ≤ N ≤ 14, respectively. Renormalization group (RNG) k–ε turbulent model which is a finite volume solver is utilized for the computational fluid dynamics (CFD) simulation. It was noticed that the proposed perforated turbulators could considerably intensify the thermal performance compared to typical VRW inserts. It is found that the recirculating flow generated by the PVRW augments the fluid mixing and transfers the heat from the pipe walls to the core of the tube. The simulations illustrate that the amount of heat transfer enhances 25.2% reducing the DR from 0.4 to 0.13 at Re = 18,000 and N = 14. Also, using PVRW turbulators with N = 7 and DR = 0.26 augments the average Nusselt number around 354.3% compared to the circular pipe without inserts. The highest thermal efficiency parameter of η = 2.25 could be obtained at Re = 5000 for the heat exchangers fitted by vortex generators with N = 14 and DR = 0.26.
Subject
Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献