Chatter Stability of Orthogonal Turn-Milling Process in Frequency and Discrete-Time Domains

Author:

Berenji Kaveh Rahimzadeh1,Tehranizadeh Faraz1,Budak Erhan1

Affiliation:

1. Sabancı University Manufacturing Research Laboratory, , Tuzla, Istanbul 34956 , Turkey

Abstract

Abstract As the industry seeks better quality and efficiency, multitasking machine tools are becoming increasingly popular owing to their ability to create complex parts in one setup. Turn-milling, a type of multi-axis machining, combines milling and turning processes to remove material through simultaneous rotations of the cutter and workpiece with the translational feed of the tool. While turn-milling can be advantageous for large parts made of hard-to-cut materials, it also offers challenges in terms of surface form errors and process stability. Because tool eccentricity and workpiece rotation lead to more complexity in process mechanics and dynamics, traditional milling stability models cannot predict the stability of turn-milling processes. This study presents a mathematical model based on process mechanics and dynamics by incorporating the unique characteristics of the orthogonal turn-milling process to avoid self-excited chatter vibrations. A novel approach was employed to model time-varying delays considering the simultaneous rotation of the tool and workpiece. Stability analysis of the system was performed in both the discrete-time and frequency domains. The effects of eccentricity and workpiece speed on stability diagrams were demonstrated and validated through experiments. The results show that the tool eccentricity and workpiece speed alter the engagement geometry and delay in the regeneration mechanism, respectively, leading to significant stability diagram alterations. The proposed approach offers a comprehensive framework for the stability of orthogonal turn-milling and guidance for the selection of process conditions to achieve stable cuts with enhanced productivity.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3